Exploiting Semantic Distance in Linked Open Data for Recommendation
نویسنده
چکیده
The use of Linked Open Data (LOD) has been explored in recommender systems in different ways, primarily through its graphical representation. The graph structure of LOD is utilized to measure inter-resource relatedness via their semantic distance in the graph. The intuition behind this approach is that the more connected resources are to each other, the more related they are. One drawback of this approach is that it treats all inter-resource connections identically rather than prioritizing links that may be more important in semantic relatedness calculations. Another drawback of current approaches is that they only consider resources that are connected directly or indirectly through an intermediate resource only. In this document, we show that different types of inter-resource links hold different values for relatedness calculations between resources, and we exploit this observation to introduce improved resource semantic relatedness measures that are more accurate than the current state of the art approaches. Moreover, we introduce an approach to propagate current semantic distance approaches that does not only expand the coverage of current approaches, it also increases their accuracy. To validate the effectiveness of our approaches, we conducted several experiments to identify the relatedness between musical artists in DBpedia, and they demonstrated that approaches that prioritize link types resulted in more accurate recommendation results. Also, propagating semantic distances beyond one hub resources does not only result in an improved accuracy, it also shows that propagating semantic distances beyond one hub resources improves the coverage of LOD-based recommender
منابع مشابه
Exploiting FrameNet for Content-Based Book Recommendation
Adding semantic knowledge to a content-based recommender helps to better understand the items and user representations. Most recent research has focused on examining the added value of adding semantic features based on structured web data, in particular Linked Open Data (LOD). In this paper, we focus in contrast on semantic feature construction from text, by incorporating features based on sema...
متن کاملDeveloping a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کاملCrowdsourced Evaluation of Semantic Patterns for Recommendation
In this paper we explore the use of semantics to improve diversity in recommendations. We use semantic patterns extracted from Linked Data sources to surface new connections between items to provide diverse recommendations to the end users. We evaluate this methodology by adopting a bottom-up approach, i.e. we ask users of a crowdsourcing platform to choose a movie recommendation from among fiv...
متن کاملLinked Open Data-Enabled Recommender Systems: ESWC 2014 Challenge on Book Recommendation
In this chapter we present a report of the ESWC 2014 Challenge on Linked Open Data-enabled Recommender Systems, which consisted of three tasks in the context of book recommendation: rating prediction in cold-start situations, top N recommendations from binary user feedback, and diversity in content-based recommendations. Participants were requested to address the tasks by means of recommendatio...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017